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The Mars Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) 

spacecraft, which successfully touched down on the planet surface on November 26, 2018, was proposed as a 

near build-to-print copy of the Mars Phoenix vehicle to reduce the overall cost and risk of the mission.  Since 

the lander payload and the atmospheric entry trajectory were similar enough to those of the Phoenix mission, 

it was expected that the Phoenix thermal protection material thickness would be sufficient to withstand the 

entry heat load. However, allowances were made for increasing the heatshield thickness because the planned 

spacecraft arrival date coincided with the Mars dust storm season.  The aftbody Thermal Protection System 

(TPS) components were not expected to change.  In a first for a US Mars mission, the aerothermal 

environments for InSight included estimates of radiative heat flux to the aftbody from the wake.  The 

combined convective and radiative heat fluxes were used to determine if the as-flown Phoenix thermal 

protection system (TPS) design would be sufficient for InSight.  Although the radiative heat fluxes on the 

aftbody were predicted to be comparable to, or even higher than the local convective heat fluxes, all analyses 

of the aftbody TPS showed that the design would still be adequate. Aerothermal environments were 

computed for the vehicle from post-flight reconstruction of the atmosphere and trajectory and compared 
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with the design environments. These comparisons showed that the predicted as-flown conditions were less 

severe than the design conditions. 

I. Introduction 

The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission is a robotic 

lander designed to study the deep interior of the planet Mars.  The primary instruments are intended to measure the 

seismic activities of Mars along with temperature distribution up to 6 meters in-depth.  In order to reduce overall cost 

and risk of the mission, the InSight entry vehicle was designed to be a near build-to-print of the Phoenix entry vehicle, 

including the Thermal Protection System (TPS).  Therefore, the baseline TPS design for the InSight entry vehicle 

included the same TPS materials and thicknesses as Phoenix.  The aerothermal analysis of the InSight spacecraft was 

targeted to determine if the designed TPS thicknesses were sufficient to survive the InSight entry environments.  

Allowances were made for an increase in thickness for the TPS for the forebody due to a scheduled entry during the 

traditional dust storm season on Mars.  Dust in the atmosphere was not expected to influence the convective heating 

on the aftbody other than the effects of slight increases in the density.  Unlike Phoenix and all previous US Mars 

missions, this InSight mission included the radiative component of the heat flux on the spacecraft.  All previous US 

Mars missions neglected the contribution of radiation to the total heating because it was believed to be negligible. At 

the time of InSight’s project Critical Design Review (CDR), the InSight Aerothermal Working Group (AWG) began 

a radiation analysis effort based on recent theoretical analyses [1], simulations [2, 3, 4, 5, 6],  experiments [7], and 

flight data [8] indicating that heating from mid-wave infrared CO2 radiation would be significant, primarily on the 

aftbody components.  This new approach influenced the prevailing TPS margin policy [9] by adding new uncertainties 

to the radiative heating [10]. All analyses showed that the design TPS thicknesses on the aftbody components had 

positive margins for the mission. 

Immediately after the entry, descent, and landing of the InSight components on Mars on November 26, 2018, 

reconstruction of the entry began.  Once the best estimated trajectory (BET) was determined [11, 12, 13], aerothermal 

analyses on that BET showed that the predicted as-flown conditions were more benign than the design conditions. 

 

II. Aerothermal Design Analysis 

The InSight geometry was a 70⁰ sphere-cone forebody, and the aftbody consisted of a conical backshell and 

parachute cone, along with a parachute lid.  The entry vehicle and TPS materials are illustrated in Fig. 1. 

 

Fig. 1 InSight spacecraft geometry. 

Design trajectories were determined from Monte Carlo simulations about the target trajectory.  The trajectory 

designers provided the CFD analysts with synthetic trajectories that were created to bound the 99th percentile of the 
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ranges seen in the simulations.  These bounding entries consisted of the trajectory that subjected the vehicle to the 

maximum heat rate (MHR) and the trajectory along which the vehicle would sustain the maximum total heat load 

(MHL).  Analysts used the MHR trajectory to evaluate the survivability of the TPS materials and the MHL trajectory 

to determine the thickness of the TPS to keep the bond line temperatures below design allowables. 

A. Convective Heating 

Aerothermal convective heating calculations were performed at Lockheed Martin, using the LAURA code [20], 

and at NASA Ames Research Center, using the DPLR code [25].  Both codes are capable of calculating both 2-

D/axisymmetric and full 3-D simulations.  DPLR and LAURA are viewed as NASA’s workhorse flow solvers and 

they have been extensively used to predict the aerothermal environments of planetary vehicles [14, 15, 16, 17, 18, 19].  

The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is a high fidelity, structured grid flow 

solver, specialized for hypersonic re-entry physics, utilizing state-of-the-art algorithms for CFD simulations [20, 21].  

Key elements of LAURA include Roe’s averaging [22] and Yee’s Symmetric Total Variation Diminishing (STVD) 

[23] formulation of second-order, inviscid flux. Its non-equilibrium real-gas Navier-Stokes flow calculations are 

parallelized.  

The Data Parallel Line Relaxation (DPLR) code uses a finite-volume discretization to solve the reacting Navier-

Stokes equations for fluids in thermo-chemical non-equilibrium on structured grids. It is also parallelized for efficient 

computing on large clusters. While the software was originally designed for steady-state aerothermodynamic analysis 

of planetary entry vehicles, DPLR has evolved over the years to include a broad spectrum of numerical and physical 

models that enable it to accurately simulate most compressible flows. Additional details on DPLR’s capabilities can 

be found in the references [24, 25, 26]. 

Both LAURA and DPLR were run with the Martian atmosphere modeled using a Mitcheltree 8-species (CO2, CO, 

N2, O2, NO, C, N, O), 12 reaction model over a supercatalytic wall in radiative equilibrium. The InSight design 

trajectory was ballistic, although based on Phoenix trajectory reconstruction, some excursion from zero angle of attack 

was expected.  While most of the aerothermal analyses were axisymmetric/2D, i.e., no angle of attack, additional 3D 

runs were performed with a 10⁰ angle of attack to assess the possible onset of turbulent flow on the heatshield.    

Mars Science Laboratory (MSL) flight reconstruction [27] was used to determine updated, less conservative 

criteria for turbulent transition on the InSight heatshield.  Based on the MSL data, InSight analysts used a momentum 

thickness Reynolds number criterion of Reθ=400 for smooth wall transition onset and a roughness height Reynolds 

number criterion of Rekk=200 for rough wall transition onset.  Analysts determined an equivalent-sand-grain-

roughness, k, by measuring the actual roughnesses on multiple SLA-561V arc jet test models and found that a value 

of 0.6 mm bounded all data on models tested in heat fluxes below 100 W/cm2.  Fully margined predicted heat fluxes 

on the InSight heatshield were substantially lower than 100 W/cm2.   Figure 2 shows the calculated values for Reθ and 

Rekk distributions along the InSight heatshield at various times in the trajectory flying at a 10⁰ angle of attack, including 

the peak heat flux time (PH) and the peak dynamic pressure times (PP).  As seen in the figures, the values were 

substantially below the Reθ = 400 and Rekk=200 criteria.   Therefore, analyses on the heatshield were performed with 

laminar flow. 

The un-margined convective heating distributions calculated by both LAURA and DPLR are shown in Fig. 3.  

While LAURA and DPLR predict nearly identical results on the heatshield, there are some differences on the aftbody.   

Mid-lower backshell peak fluxes occurred inside regions of flow re-circulation with complex structure, where LAURA 

and DPLR solutions vary. The peaks were found at interfaces between “lobes.”  In order to be conservative when 

determining the TPS thickness requirements on the backshell, the analyses between the two codes were compared and 

the maximum values at each time were used to develop boundary conditions for thermal sizing analyses. 

 



4 

 

 
Fig. 2 Calculated Reθ and Rekk for the InSight heatshield at various times along the trajectory. 

 
Fig. 3 Un-margined convective heat flux distribution on InSight at various times along the trajectory. 

. 

B. Radiative Heating  

Early radiation analyses were performed by both LAURA/HARA and DPLR/NEQAIR.  The High-temperature 

Aerothermodynamic RAdiation (HARA) model that was applied is discussed in detail by Johnston et al [28, 29]. A 

line-by-line approach is used for atoms and optically thick molecules, while a smeared band model is used for optically 

thin molecules. HARA’s modeling is based on a set of atomic levels and lines from the National Institute of Standards 

and Technology (NIST) [30] and Opacity Project databases [31].  The atomic bound-free model is composed of cross 

sections from the Opacity project’s online TOPbase [32], which were curve fit by Johnston [28]. HARA uses tangent-

slab (1D assumption) as the default option for calculating the wall-directed radiative heat flux, with an option for 

running full angular integration for appropriate cases using a process known as ray tracing. Non-EQuilibrium AIR 

(NEQAIR) is a line-by-line radiation code which computes spontaneous emission, absorption and stimulated emission 

due to transitions between various energy states of chemical species along a line-of-sight. Twenty-two individual 

electronic transitions are considered for atoms and molecules, with the molecular band systems being resolved for 

each rotational line. Since the report of Whiting et al. [33], numerous updates have been incorporated into NEQAIR, 

including: using the latest version of the NIST atomic database (version 5.0) [34], using the bound-free cross sections 

from TOPbase [32], incorporating the CO2 database from CDSD-4000 [1], parallelization, and improvements to the 

mechanics of QSS. The version of NEQAIR used preflight was v14.0.24.  As with HARA, NEQAIR uses the tangent-

slab approximation as the default option for radiation transport. For aftbody points, ancillary utilities enable NEQAIR 

to perform full hemispherical integration calculations of radiative heat flux comparable to HARA’s ray tracing. 
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Early results showed significant differences between the solutions sets, due to inadequate resolution in the spectral 

grid in HARA that was later corrected [10].  For that reason, the DPLR/NEQAIR results formed the baseline solution 

for pre-flight, although sensitivity studies from LAURA/HARA and direct LAURA-DPLR and NEQAIR-HARA 

comparisons were also made. 

For most of the pre-flight InSight calculations, NEQAIR was run in tangent-slab mode on axisymmetric flow 

solutions, as the traditional practice for radiation analysis in this work.  Due to the complexities of the flow found in 

the wake of a vehicle, and the more complicated geometries on the aftbody, using a tangent-slab approximation is 

questionable for aftbody radiative heating calculations [6]. For more accurate estimation of radiative heat flux on the 

aftbody, full angular integrations are required.  Full angular integration is achieved by performing a numerical 

integration of radiance at a body point with respect to solid angle over all possible lines of sight to/from the body 

point.  While this approach has since been automated for both HARA and NEQAIR, pre-flight radiative conditions 

were evaluated with HARA ray tracing at few times and compared with the tangent-slab results.  From these 

comparisons, conservative knock down factors for tangent slab values were developed for the various regions of the 

aftbody.  Figure 4 shows the ratios of the ray tracing to the tangent-slab results over the entire body at the time of peak 

radiative heating on the parachute lid (left) and the time varying ratio on the parachute lid (right).  Conservative knock 

down factors were determined, with the analysts using 1.0 (no reduction) for the mid lower backshell location, 0.75 

for the main seal and parachute cone location, and 0.41 for the center of the parachute lid.   

 

 
 

Fig. 4 Ratios of HARA ray tracing to tangent-slab radiation calculations. 

 

C. Combined Aeroheating Results 

Once the convective and radiative heating contributions were determined, they were combined to evaluate the 

effect of the radiative component on the total heating.  For the heatshield stagnation point, Fig. 5 shows that the 

contribution of radiant heating was small and that convective heating dominated the total heating. 
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Fig. 5 Pre-flight predictions of the heatshield stagnation point heating. 

 

Figures 6a, b, c, and d show the predicted convective and radiative heating for the main seal, mid lower backshell, 

the parachute cone, and the center of the parachute lid locations, respectively.  Each of these locations was critical to 

determining the TPS thickness requirements.  On the aftbody, several of the locations show the radiative heating to be 

at a similar magnitude to the convective heating.  These results indicate that the previous approach to TPS design for 

Mars [9], neglecting radiative heating from the wake, could result in non-conservative designs for aftbody TPS. 

Once the modeling uncertainties and margins (not discussed in this paper) were added to the design heating 

profiles, TPS thickness analyses were performed. The Phoenix aftbody TPS designs were found to be adequate for the 

InSight mission.  The InSight heatshield TPS thickness was nevertheless augmented by about 25% for flight through 

a dusty atmosphere (also not discussed in this paper). 

 

 
a) Main Seal heating                                                              b) Mid Lower Backshell heating 
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   c) Parachute Cone Heating                                             d) Parachute Lid Heating 

Fig.6 Heating predictions for various locations on the InSight aftbody. 

III. Reconstructed Aerothermal Environments 

The InSight mission launched from Vandenberg AFB on May 5, 2018 and entered the atmosphere of Mars on 

November 26, 2018.  Extensive data analyses were performed from all available instrumentation to reconstruct the 

best-estimated trajectory (BET) of the spacecraft. It should be noted that InSight did not have any aerothermal 

instrumentation (e.g. pressure sensors, heat flux gages, thermocouples), so aerothermal reconstruction predictions 

were based solely on the BET. Utilizing the BET, both DPLR and LAURA analyzed the convective heating on the 

vehicle with no angle of attack.   As with pre-flight comparisons, both codes agreed within 1% on the forebody and 

had the expected differences on the aftbody.  The LAURA code was run in 3-D to evaluate the conditions at angle of 

attack at the peak heating and peak pressure times.  Boundary layer properties at angle of attack agreed with design 

analyses where the flow over the forebody remained laminar for the flight. 

The BET reconstructed peak convective heating along the body for the InSight entry was predicted to be very 

similar to the MHL nominal values, as shown in Fig. 7 (red curves).    The convective heating distribution at the peak 

dynamic pressure (Fig7, royal blue curves) was lower for the BET than the MHL design due to a faster entry duration. 

 
Fig. 7 Comparison of predicted convective heating profiles using the BET (left) and the MHL design 

trajectory (right). 

 

The NEQAIR and HARA codes were used to analyze the radiative heating on the aftbody using full hemispherical 

integration.  The codes agreed within 5% on most aftbody points of interest. 

The aerothermal heating predictions for select locations for the BET are shown in Figs. 8 and 9.  
 



8 

 

 
Fig. 8 Reconstructed stagnation point heating predictions for the BET. 

 
Reconstruction has shown that the BET flew for a shorter time than the design environment as evident when 

comparing the stagnation point heating histories, shown in Fig. 10.  The times for the MHL were adjusted such that 

the peak heating times coincide.  While the predicted peak heat fluxes for the BET were similar to those for the MHL 

design, the predicted total heat loads on the vehicle were considerably less.  Total heat load tends to drive the TPS 

thickness requirements. Therefore, the as-built TPS thicknesses were demonstrably conservative for the InSight as-

flown trajectory. 

 
Fig. 9 Reconstructed heating predictions of the main seal (left) and parachute lid (right) for the BET. 

 
Fig. 10 Comparison of predicted BET and MHL stagnation point heating histories. 
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IV. Summary and Conclusions 

The InSight mission was the first US mission to Mars to consider the radiative heating component on the backshell 

TPS.  Although the preflight aerothermal analyses showed that the radiative heating on the heatshield was predicted 

to be extremely small, the analyses also showed that the radiative heating was predicted to be comparable to, and 

sometimes greater than, the convective heating for several aftbody locations.  This should be further verified when the 

Mars 2020 spacecraft enters the Mars atmosphere in February 2021 with aftbody total heat flux and radiometer 

measurements from the MEDLI2 set of instruments [35].  As NASA proceeds with future Mars missions, the aftbody 

radiation will no longer be neglected when designing the TPS for the spacecraft. 
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